

Materialdatenblatt 1.4404

Beschreibung

Die eisenbasierte Legierung 1.4404 zeichnet sich durch hohe Dehnfestigkeit und Korrosionsresistenz aus. Sie ist in vielen Bereichen einsetzbar, z.B. in der Uhren- und Schmuckherstellung, im medizinischen Bereich für Operationshilfen, Endoskopie und Orthopädie oder in der Luft- und Raumfahrt für die Herstellung von Befestigungsteilen. Die Bauteile können im Nachgang weiter bearbeitet oder poliert werden.

Der Einsatz von Bauteilen aus 1.4404 ist in einem Temperaturbereich von 427 °C bis 816 °C nicht geeignet, weil hier eine Ausscheidung von Chrom-Karbiden erfolgt. Aufgrund des schichtweisen Aufbauprozesses weisen die Bauteile eine bestimmte Anisotropie auf, die sich in den mechanischen Eigenschaften zeigt.

Eigenschaften & Anwendung

Gute Korrosionsbeständigkeit, hohe Dehnfestigkeit, maschinelle Nachbearbeitung möglich, erfüllt die Anforderungen der Norm ASTM F138 ("Standard-Schmiede-Qualität für 18Cr-14Ni-2,5MO Edelstahlteile und Draht für chirurgische Implantate, UNS S31673").

Für Uhren- und Schmuckherstellung, Luft- und Raumfahrt, Automobilindustrie, Lebensmittel- und Chemieanlagen

Chemische Zusammensetzung (in Gew. - %)

Cr	17,0 - 19,0	Ni	13,0 - 15,0
Мо	2,25 - 3,0	С	≤ 0,030
Mn	≤ 2,0	Cu	≤ 0,50
P	≤ 0,025	S	≤ 0,010
Si	≤ 0,75	N	≤ 0,10
Fe	Rest		

Physikalische Eigenschaften

Relative Dichte ca. 100 %

Dichte min. 7,9 g/cm³

Materialdatenblatt 1.4404

Mechanische Eigenschaften der Bauteile 1

Zugfestigkeit [N/mm²] ²		wie gebaut		
	horizontale Richtung (XY)	640 ± 50 MPa		
	vertikale Richtung (Z)	540 ± 55 MPa		
Streckgrenze [N/mm²] ²				
	horizontale Richtung (XY)	530 ± 60 MPa		
	vertikale Richtung (Z)	470 ± 90 MPa		
Bruchdehnung [%]				
	horizontale Richtung (XY)	40 ± 15 %		
	vertikale Richtung (Z)	50 ± 20 %		
Young's Modulus [kN/mm²]				
	horizontale Richtung (XY)	typ. 185 GPa		
	vertikale Richtung (Z)	typ. 180 GPa		
Härte [HRC]	3			
		typ. 89 HRB		

¹ bei Raumtemperatur

Hinweis

Die angegebenen Werkstoffkennwerte sind Abhängig von Maschine, Pulverwerkstoff, Parameter-Einstellungen sowie anderen Faktoren wie die Anisotropie der Bauteile.

Sie bieten daher keine ausreichende Grundlage zur Bauteilauslegung. Diese Angaben dienen lediglich als Richtwerte.

² Zugversuch nach ISO 6892/ASTM EBM

³ Rockwell Härte (HRB) Messung nach EN ISO 6508-1 auf geschliffener Oberfläche